GPU Monitoring using Azure Monitor
Overview
Today, many highly parallel HPC/AI applications use GPU to improve the run-time performance.
It is important to be able to monitor the GPU metrics (e.g. GPU and memory utilization, tensor cores activity, temperature of GPU’s etc.) to determine if the GPUs are being used efficiently and predict any reliability issues.
Azure Monitor is an azure service that provides a platform to ingest, analyze, query and monitor all types of data. The primary advantage of using Azure Monitor to monitor your data is simplicity, you do not need to deploy any additional resources or install any extra software to monitor your data.
Here we give an example of how to use Azure monitor to monitor various ND96asr_v4 (A100 on Ubuntu-HPC 18.04) GPU metrics. Please note that the GPU monitoring procedures outlined in this blog post are very portable and can be used with other Azure GPU types (e.g NDv2 and NC series).
Which GPU metrics to use?
Nvidia Datacenter GPU Monitoring (DCGM) is a framework that allows access to several low-level GPU counters and metrics to help give insights to the performance and health of the GPU’s. In this example we will be monitoring counter/metrics provided by dmon feature. All DCGM metrics/counters can be accessed by a specific field id. To see all available field ids:
Note: The DCGM stand-alone executable dcgmi is pre-loaded on the ubuntu-hpc marketplace images.
Some useful DCGM field Ids
Field Id | GPU Metric |
150 | temperature (in C) |
203 | utilization (0-100) |
252 | memory used (0-100) |
1004 | tensor core active (0-1) |
1006 | fp64 unit active (0-1) |
1007 | fp32 unit active (0-1) |
1008 | fp16 unit active (0-1) |
How to create a custom GPU Azure monitor collector
The python script gpu_data_collector.py show you how to connect to your log analytics workspace , collect various DCGM dmon metrics (by selecting the field Ids of interest) and send them at a specified time interval to your log analytics workspace.
Note: This script also collects SLURM job id and the physical hostnames (i.e. physical hosts on which this VM is running). By default, data is only sent to log analytics workspace if a SLURM job is running on the node (this can be overridden with the -fgm option).
This script can be started using a linux crontab (see -uc argumet), stand-alone or as a linux systemd service.
To connect to the log analytics workspace the customer_id and shared_key needed to be defined. (Customer ID (i.e. Workspace ID) and shared key (primary or secondary key) can be found in the Azure portal-->log analytics workspace-->Agents management).
You can either define customer_id and shared_key in the script or set with environment variables.
Note: if customer_id or shared_key is defined in this script, then the LOG_ANALYTICS_CUSTOMER_ID or LOG_ANALYTICS_SHARED_KEY environmental variables will be ignored.
Create GPU Monitor dashboard (with Azure Monitor)
You can go to the log analytics workspace you created in Azure and use kusto queries to create the GPU metrics charts you are interested in.
Here is a query to get the average GPU utilization of a particular SLURM job running on a virtual machine with GPU's.
You can then pin these graphs to your Azure dashboard to create a dashboard like the following.
Conclusion
It's important to provide GPU monitoring to gain insights into how effectively your application is using the GPU’s.
Azure monitor has some powerful monitoring capabilities and allows you to provide GPU monitoring without having to deploy additional resources or install extra software. An example client python code is provided that collects and sends GPU metrics to Azure Monitor, which can then be used to create a custom GPU monitoring dashboard.
Published on:
Learn moreRelated posts
Azurite: Build Azure Queues and Functions Locally with C#
Lets say you are a beginner Microsoft Azure developer and you want to : Normally, these tasks require an Azure Subscription. But what if I tol...
Data encryption with customer-managed key (CMK) for Azure Cosmos DB for MongoDB vCore
Built-in security for every configuration Azure Cosmos DB for MongoDB vCore is designed with security as a foundational principle. Regardless ...
Azure Developer CLI: From Dev to Prod with Azure DevOps Pipelines
Building on our previous post about implementing dev-to-prod promotion with GitHub Actions, this follow-up demonstrates the same “build ...
Azure DevOps OAuth Client Secrets Now Shown Only Once
We’re making an important change to how Azure DevOps displays OAuth client secrets to align with industry best practices and improve our overa...
Azure Managed Instance for Apache Cassandra v5.0 Generally Available!
Azure Managed Instance for Apache Cassandra Upgrade to Cassandra v5.0 is now generally available, bringing a host of powerful new features and...
Hunting Living Secrets: Secret Validity Checks Arrive in GitHub Advanced Security for Azure DevOps
If you’ve ever waded through a swamp of secret scanning alerts wondering, “Which of these are actually dangerous right now?”— this enhancement...
Real-Time Security with Continuous Access Evaluation (CAE) comes to Azure DevOps
We’re thrilled to announce that Continuous Access Evaluation (CAE) is now supported on Azure DevOps, bringing a new level of near real-time se...