Bring your own data to Azure OpenAI chat models
Introduction
Azure OpenAI models provide a secure and robust solution for tasks like creating content, summarizing information, and various other applications that involve working with human language. Now you can operate these models in the context of your own data. Try Azure OpenAI Studio today to naturally interact with your data and publish it as an app from from within the studio.
Getting Started
Follow this quickstart tutorial for pre-requisites and setting up your Azure OpenAI environment.
In order to try the capabilities of the Azure OpenAI model on private data, I am uploading an ebook to the Azure OpenAI chat model. This e-book is about "Serverless Apps: Architecture, patterns and Azure Implementation" written by Jeremy Likness and Cecil Phillip. You can download the e-book here
Before uploading own data
Prior to uploading this particular e-book, the model's response to the question on serverless design patterns is depicted below. While this response is relevant, let's examine if the model is able to pick up the e-book related content during the next iteration
After uploading own data
This e-book has an exclusive section that talks in detail about different design patterns like Scheduling, CQRS, Event based processing etc.
After training the model on this PDF data, I asked a few questions and the following responses were nearly accurate. I also limited the model to only supply the information from the uploaded content. Here's what I found.
Now when I asked about the contributors to this e-book, it listed everyone right.
Read more
With enterprise data ranging to large volumes in size, it is not practical to supply them in the context of a prompt to these models. Therefore, the setup leverages Azure services to create a repository of your knowledge base and utilize Azure OpenAI models to interact naturally with them.
The Azure OpenAI Service on your own data uses Azure Cognitive Search service in the background to rank and index your custom data and utilizes a storage account to host your content (.txt, .md, .html, .pdf, .docx, .pptx). Your data source is used to help ground the model with specific data. You can select an existing Azure Cognitive Search index, Azure Storage container, or upload local files as the source we will build the grounding data from. Your data is stored securely in your Azure subscription.
We also have another Enterprise GPT demo that allows you to piece all the azure building blocks yourself. An in-depth blog written by Pablo Castro chalks the detail steps here.
Getting started directly from Azure OpenAI studio allows you to iterate on your ideas quickly. At the time of writing this blog, the completions playground allow 23 different use cases that take advantage of different models under Azure OpenAI.
- Summarize issue resolution from conversation
- Summarize key points from financial report (extractive )
- Summarize an article (abstractive)
- Generate product name ideas
- Generate an email
- Generate a product description (bullet points)
- Generate a listicle-style blog
- Generate a job description
- Generate a quiz
- Classify Text
- Classify and detect intent
- Cluster into undefined categories
- Analyze sentiment with aspects
- Extract entities from text
- Parse unstructured data
- Translate text
- Natural Language to SQL
- Natural language to Python
- Explain a SQL query
- Question answering
- Generate insights
- Chain of thought reasoning
- Chatbot
Resources
There are different resources to get you started on Azure OpenAI. Here's a few:
- Apply for access to Azure OpenAI
- Azure OpenAI Service - Documentation, quickstarts, API reference - Azure Cognitive Services | Microsoft Learn
- Introduction to Azure OpenAI Service - Training | Microsoft Learn
- GitHub - Azure/azure-openai-samples
- Revolutionize your Enterprise Data with ChatGPT
Published on:
Learn moreRelated posts
Microsoft Purview | Information Protection: Auto-labeling for Microsoft Azure Storage and Azure SQL
Microsoft Purview | Information Protection will soon offer Auto-labeling for Microsoft Azure Storage and Azure SQL, providing automatic l...
5 Proven Benefits of Moving Legacy Platforms to Azure Databricks
With evolving data demands, many organizations are finding that legacy platforms like Teradata, Hadoop, and Exadata no longer meet their needs...
November Patches for Azure DevOps Server
Today we are releasing patches that impact our self-hosted product, Azure DevOps Server. We strongly encourage and recommend that all customer...
Elevate Your Skills with Azure Cosmos DB: Must-Attend Sessions at Ignite 2024
Calling all Azure Cosmos DB enthusiasts: Join us at Microsoft Ignite 2024 to learn all about how we’re empowering the next wave of AI innovati...
Query rewriting for RAG in Azure AI Search
Getting Started with Bicep: Simplifying Infrastructure as Code on Azure
Bicep is an Infrastructure as Code (IaC) language that allows you to declaratively define Azure resources, enabling automated and repeatable d...
How Azure AI Search powers RAG in ChatGPT and global scale apps
Millions of people use Azure AI Search every day without knowing it. You can enable your apps with the same search that enables retrieval-augm...
Episode 388 – Getting Started with Azure Bicep: Infrastructure as Code with a Domain Specific Language
Welcome to Episode 388 of the Microsoft Cloud IT Pro Podcast. In this episode, we dive into Azure Bicep, Microsoft’s streamlined language for ...
RAG with SQL Vector Store: A Low-Code/No-Code Approach using Azure Logic Apps
Data is at the heart of every AI application, and efficient data ingestion is critical for success. With over 1,400 enterprise connectors, Log...