Stream Data to Your Data Lake Using Azure Data Explorer
Summary
Microsoft Azure Data Explorer is a great resource to ingest and process streaming data. Azure Data Lake Storage is a great resource for storing large amounts of data. The end-to-end conceptual architecture contained in the GitHub Repository accompanying this blog focuses on deploying an environment that plays to the strengths of both of these services by using Azure Synapse Analytics to simulate streaming data to them. In this architecture, the core strength of Azure Data Explorer is performant real-time storage and analytics. The core strength of Azure Data Lake Storage is cost-effective and efficient long-term storage.
Target Audience
Data Engineering and Analytics teams that have the need to support both real-time analytics (hot path) and longer running batch analytics (cool path) are the teams targeted by the architecture shown above. Longer running batch analytics could include Machine Learning Training, Enterprise Data Warehouse loads, or querying data in place but enriching with data from batch sources. This architecture can support concepts like Lamda, Kappa, or Lakehouse.
Why Azure Data Explorer?
Performance in the Hot Path
Azure Data Explorer is extremely performant with telemetry and log data per this benchmark. To take advantage of this performance, streaming data must be ingested into Azure Data Explorer Tables so that the benefits of column store, text indexing, and sharding can be reaped. Data residing in the Azure Data Explorer Tables can be consumed by popular analytics services such as Spark, Power BI, or other services that can consume ODBC sources.
Performance and Control in the Cool Path
Azure Data Explorer offers the ability to control data going into the Cool Path/Data Lake at a granular level using Continuous Export and External Tables. External Tables allow you to define a location and format to store data in the lake or use a location that already exists. Continuous Export allows you to define the interval in which data is exported to the lake. Combining these two features allow you to create parquet files that are partitioned and optimally sized for analytical queries while avoiding the small file problem, provided you can accept the latency that comes with batching the data for larger writes.
Easy Ingestion from Azure Event Hubs
Azure Event Hubs often serves as the starting place for big data streaming. Azure Data Explorer integrates very well with Azure Event Hubs. In the GitHub repository tied to this architecture, you'll find a guide to complete the process of ingesting data into Azure Data Explorer from Event Hubs through an easy-to-use wizard. Even if a higher degree of configuration up is needed up front, there's an efficient way of creating this integration in the Azure Portal.
Flexibility for Other Use Cases
Azure Data Explorer has a dizzying number of features beyond what is demonstrated here. Other use case based solution architectures documented are Big Data Analytics, IoT Analytics, Geospatial Processing and Analytics, and more at this link. The Kusto query language employed by Azure Data Explorer has a lot of useful functions out of the box where other analytics tools might require a greater degree of customization. Some examples would be geo-spatial clustering, time-series analysis, and JSON parsing/querying. Finally, Azure Data Explorer also has a useful visualization layer built-in that can display real-time dashboards to deliver speed to value when building out analytics.
What's in the Repo?
The repository contains all artifacts needed to create the conceptual architecture detailed in this post. Furthermore, the repository is friendly to Azure newcomers and gives detailed walkthroughs on the concepts below (and more!).
- Infrastructure As Code (IaC) Deployment via Bicep templates - The Bicep language is one of the best ways to use code to deploy resources in Azure. All resources for the architecture deployment and some of the configuration of the integration between those resources are contained in Bicep templates in the repository.
- Managed Identities to secure communications between resources - Managed Identities can be used to simplify usage of credentials needed to allow Azure resources to communicate to one another. The repository will walk through the use of these credentials so that Azure Data explorer can read from Event Hubs, write to storage, and other use cases.
- Introduction to Streaming Consumption in Azure - Azure Data Explorer and Event Hubs work together in this architecture to consume the events generated by Azure Synapse Analytics. The repository shows how to connect to Event Hubs to other services, observe events, and use consumer groups. As previously covered, for Azure Data Explorer the repository shows how to consume Event Hub events, persist to Azure Data Explorer tables, and persist to parquet files residing in Azure Data Lake Storage.
- Introduction to Concepts in Azure Synapse Analytics - Azure Synapse Analytics is used to generate events in this architecture. Although this is not the normal workload for Synapse there are several higher-level concepts that are walked through in the repository. Concepts introduced include data processing orchestration in Synapse Pipelines, querying from the Azure Data Lake Storage using Synapse Serverless SQL, and deploying Python code in Synapse Spark.
Conclusion
Azure Data Explorer and Azure Data Lake Storage work well together to deliver a flexible streaming analytics environment. The Azure Data Explorer blog and Azure Storage blog are great places to monitor upcoming features and learn about detailed use cases. Try out the architecture in the GitHub repository today to learn how Azure Data Explorer can make your streaming analytics easier!
Published on:
Learn moreRelated posts
Final Days for the MSOnline and AzureAD PowerShell Modules
After many twists and turns since August 2021, the MSOnline module retirement will happen in April 2025. The AzureAD module will then retire i...
Join the Conversation: Call for Proposals for Azure Cosmos DB Conf 2025!
Are you passionate about Azure Cosmos DB? Do you have insights, experiences, or innovations that the developer community would love to hear? N...
High Performance Computing in Azure - with Mark Russinovich
See the latest innovations in silicon design from AMD with new system-on-a-chip high bandwidth memory breakthroughs with up to 7 terabytes of ...
Power Pages | Azure AD B2C | Confirm Email message on Profile
If you are unfamiliar with configuring Azure AD B2C as a Power Pages Identity Provider, refer to this post: Power Pages : Set up Azure ADÂ B2C ...
Building a RAG-Based Smart Memory Application with Azure SQL Database
Project Mission The way people work and manage information is changing rapidly in our digital age. More and more people are struggling to keep...