Loading...

Restoring Soft-Deleted Blobs with multithreading in Azure Storage Using C#

Restoring Soft-Deleted Blobs with multithreading in Azure Storage Using C#

Blob soft delete is an essential feature that safeguards your data against accidental deletions or overwrites. By retaining deleted data for a specified period, it ensures data integrity and availability, even in the event of human error. However, restoring data in the soft delete state can be more labor-intensive, as the undelete API must be called for each individual deleted blob. Currently, there is no option to bulk undelete all blobs.

 

In this blog, we provide a sample C# code that will help you restore soft-deleted data efficiently. The code leverages multiple threads to expedite the restoration process, making it particularly effective if you have a large number of blobs to restore. Additionally, this program can be configured to undelete blobs within a specific container or directory, rather than scanning the entire storage account.

 

To run this program, follow these steps:

  • Install .NET SDK: Ensure you have the .NET SDK installed on your machine.
  • Connect to Azure Account:

 

Connect-AzAccount

 

  • Add NuGet Source:

 

dotnet nuget add source https://api.nuget.org/v3/index.json -n nuget.org

 

  • Create a New Console Application:

 

dotnet new console --force

 

  • Add the following code to Program.cs.

 

using Azure.Core; using Azure.Identity; using Azure.Storage.Files.DataLake; using Azure.Storage.Files.DataLake.Models; var StorageAccountName = "xxxx"; var ContainerName = "xxxx"; var DirectoryPath = ""; var Concurrency = 500; var BatchSize = 500; static DataLakeServiceClient GetDatalakeClient(string accountName) { DataLakeClientOptions clientOptions = new DataLakeClientOptions() { Retry = { Delay = TimeSpan.FromMilliseconds(500), MaxRetries = 5, Mode = RetryMode.Fixed, MaxDelay = TimeSpan.FromSeconds(5), NetworkTimeout = TimeSpan.FromSeconds(30) }, }; // only works for prod. DataLakeServiceClient client = new( new Uri($"https://{accountName}.blob.core.windows.net"), new DefaultAzureCredential(), clientOptions); return client; } Console.WriteLine("Starting the program"); var client = GetDatalakeClient(StorageAccountName); var throttler = new SemaphoreSlim(initialCount: Concurrency); List<Task> tasks = new List<Task>(); List<string> containerNames = new List<string>(); if (string.IsNullOrEmpty(ContainerName)) { var containers = client.GetFileSystems(); foreach (var container in containers) { containerNames.Add(container.Name); } } else { containerNames.Add(ContainerName); } var totalSuccessCount = 0; var totalFailedCount = 0; foreach (var container in containerNames) { Console.WriteLine($"Recoverying for container {container}"); var fileSystem = client.GetFileSystemClient(container); var deletedItems = fileSystem.GetDeletedPaths(pathPrefix: DirectoryPath); var count = 0; var totalSuccessCountForContainer = 0; var totalFailedCountForContainer = 0; foreach (PathDeletedItem item in deletedItems) { await throttler.WaitAsync(); count++; try { var task = (fileSystem.UndeletePathAsync(item.Path, item.DeletionId)); var continuedTask = task.ContinueWith(t => { throttler.Release(); if (t.IsFaulted) { Interlocked.Increment(ref totalFailedCount); Interlocked.Increment(ref totalFailedCountForContainer); Console.WriteLine($"Failed count for container {totalFailedCountForContainer}, total failed count {totalFailedCount}, path {DirectoryPath + item.Path} due to {t.Exception.Message}"); } else { Interlocked.Increment(ref totalSuccessCount); Interlocked.Increment(ref totalSuccessCountForContainer); Console.WriteLine($"Success count for container {totalSuccessCountForContainer}, total success count {totalSuccessCount}"); } }); tasks.Add(continuedTask); } catch (Exception ex) { Console.WriteLine("Failed to create task: " + ex.ToString()); } finally { if (count == Math.Max(Concurrency, BatchSize)) { count = 0; await Task.WhenAll(tasks); tasks.Clear(); } } } await Task.WhenAll(tasks); Console.WriteLine($"Recover finished for container {container}"); }

 

 

Replace xxxx with your specific storage account and container name. If you need to restore a particular directory, provide the directory name; otherwise, leave it empty to scan the entire container. The code is configured to run with 500 threads by default, but you can adjust this number according to your needs.

 

  • Add Required Packages:

 

dotnet add package Azure.Identity dotnet add package Azure.Storage.Blobs

 

  • Build the Project:

 

dotnet build --configuration Release

 

 

  • Run the Program:

 

dotnet <path_to_dll>

 

 

Once the application is running, you can monitor the console window to track its progress and identify any potential issues or failures.

Published on:

Learn more
Azure PaaS Blog articles
Azure PaaS Blog articles

Azure PaaS Blog articles

Share post:

Related posts

IntelePeer supercharges its agentic AI platform with Azure Cosmos DB

Reducing latency by 50% and scaling intelligent CX for SMBs This article was co-authored by Sergey Galchenko, Chief Technology Officer, Intele...

1 day ago

From Real-Time Analytics to AI: Your Azure Cosmos DB & DocumentDB Agenda for Microsoft Ignite 2025

Microsoft Ignite 2025 is your opportunity to explore how Azure Cosmos DB, Cosmos DB in Microsoft Fabric, and DocumentDB power the next generat...

2 days ago

Episode 414 – When the Cloud Falls: Understanding the AWS and Azure Outages of October 2025

Welcome to Episode 414 of the Microsoft Cloud IT Pro Podcast.This episode covers the major cloud service disruptions that impacted both AWS an...

2 days ago

Now Available: Sort Geospatial Query Results by ST_Distance in Azure Cosmos DB

Azure Cosmos DB’s geospatial capabilities just got even better! We’re excited to announce that you can now sort query results by distanc...

3 days ago

Query Advisor for Azure Cosmos DB: Actionable insights to improve performance and cost

Azure Cosmos DB for NoSQL now features Query Advisor, designed to help you write faster and more efficient queries. Whether you’re optimizing ...

3 days ago

Azure Developer CLI: Azure Container Apps Dev-to-Prod Deployment with Layered Infrastructure

This post walks through how to implement “build once, deploy everywhere” patterns using Azure Container Apps with the new azd publ...

4 days ago
Stay up to date with latest Microsoft Dynamics 365 and Power Platform news!
* Yes, I agree to the privacy policy