Loading...

Restoring Soft-Deleted Blobs with multithreading in Azure Storage Using C#

Restoring Soft-Deleted Blobs with multithreading in Azure Storage Using C#

Blob soft delete is an essential feature that safeguards your data against accidental deletions or overwrites. By retaining deleted data for a specified period, it ensures data integrity and availability, even in the event of human error. However, restoring data in the soft delete state can be more labor-intensive, as the undelete API must be called for each individual deleted blob. Currently, there is no option to bulk undelete all blobs.

 

In this blog, we provide a sample C# code that will help you restore soft-deleted data efficiently. The code leverages multiple threads to expedite the restoration process, making it particularly effective if you have a large number of blobs to restore. Additionally, this program can be configured to undelete blobs within a specific container or directory, rather than scanning the entire storage account.

 

To run this program, follow these steps:

  • Install .NET SDK: Ensure you have the .NET SDK installed on your machine.
  • Connect to Azure Account:

 

Connect-AzAccount

 

  • Add NuGet Source:

 

dotnet nuget add source https://api.nuget.org/v3/index.json -n nuget.org

 

  • Create a New Console Application:

 

dotnet new console --force

 

  • Add the following code to Program.cs.

 

using Azure.Core; using Azure.Identity; using Azure.Storage.Files.DataLake; using Azure.Storage.Files.DataLake.Models; var StorageAccountName = "xxxx"; var ContainerName = "xxxx"; var DirectoryPath = ""; var Concurrency = 500; var BatchSize = 500; static DataLakeServiceClient GetDatalakeClient(string accountName) { DataLakeClientOptions clientOptions = new DataLakeClientOptions() { Retry = { Delay = TimeSpan.FromMilliseconds(500), MaxRetries = 5, Mode = RetryMode.Fixed, MaxDelay = TimeSpan.FromSeconds(5), NetworkTimeout = TimeSpan.FromSeconds(30) }, }; // only works for prod. DataLakeServiceClient client = new( new Uri($"https://{accountName}.blob.core.windows.net"), new DefaultAzureCredential(), clientOptions); return client; } Console.WriteLine("Starting the program"); var client = GetDatalakeClient(StorageAccountName); var throttler = new SemaphoreSlim(initialCount: Concurrency); List<Task> tasks = new List<Task>(); List<string> containerNames = new List<string>(); if (string.IsNullOrEmpty(ContainerName)) { var containers = client.GetFileSystems(); foreach (var container in containers) { containerNames.Add(container.Name); } } else { containerNames.Add(ContainerName); } var totalSuccessCount = 0; var totalFailedCount = 0; foreach (var container in containerNames) { Console.WriteLine($"Recoverying for container {container}"); var fileSystem = client.GetFileSystemClient(container); var deletedItems = fileSystem.GetDeletedPaths(pathPrefix: DirectoryPath); var count = 0; var totalSuccessCountForContainer = 0; var totalFailedCountForContainer = 0; foreach (PathDeletedItem item in deletedItems) { await throttler.WaitAsync(); count++; try { var task = (fileSystem.UndeletePathAsync(item.Path, item.DeletionId)); var continuedTask = task.ContinueWith(t => { throttler.Release(); if (t.IsFaulted) { Interlocked.Increment(ref totalFailedCount); Interlocked.Increment(ref totalFailedCountForContainer); Console.WriteLine($"Failed count for container {totalFailedCountForContainer}, total failed count {totalFailedCount}, path {DirectoryPath + item.Path} due to {t.Exception.Message}"); } else { Interlocked.Increment(ref totalSuccessCount); Interlocked.Increment(ref totalSuccessCountForContainer); Console.WriteLine($"Success count for container {totalSuccessCountForContainer}, total success count {totalSuccessCount}"); } }); tasks.Add(continuedTask); } catch (Exception ex) { Console.WriteLine("Failed to create task: " + ex.ToString()); } finally { if (count == Math.Max(Concurrency, BatchSize)) { count = 0; await Task.WhenAll(tasks); tasks.Clear(); } } } await Task.WhenAll(tasks); Console.WriteLine($"Recover finished for container {container}"); }

 

 

Replace xxxx with your specific storage account and container name. If you need to restore a particular directory, provide the directory name; otherwise, leave it empty to scan the entire container. The code is configured to run with 500 threads by default, but you can adjust this number according to your needs.

 

  • Add Required Packages:

 

dotnet add package Azure.Identity dotnet add package Azure.Storage.Blobs

 

  • Build the Project:

 

dotnet build --configuration Release

 

 

  • Run the Program:

 

dotnet <path_to_dll>

 

 

Once the application is running, you can monitor the console window to track its progress and identify any potential issues or failures.

Published on:

Learn more
Azure PaaS Blog articles
Azure PaaS Blog articles

Azure PaaS Blog articles

Share post:

Related posts

Announcing the new Azure DevOps Server RC Release

We’re excited to announce the release candidate (RC) of Azure DevOps Server, bringing new features previously available in our hosted version....

23 hours ago

How to Integrate Azure Service Bus with Microsoft Dynamics 365 CRM Step by Step with Example?

Keeping data flowing between applications is critical in today’s connected business world. Organizations using Microsoft Dynamics 365 CR...

4 days ago

Enhancing Secure Sign-Ins with Temporary Access Pass in Azure Active Directory

Introduction While working on improving user account recovery scenarios, a common challenge often arises: how to securely allow a user to sign...

5 days ago

Azure SDK Release (September 2025)

Azure SDK releases every month. In this post, you'll find this month's highlights and release notes. The post Azure SDK Release (September 202...

6 days ago

Batch Processing Triggered Pipeline Runs in Azure Synapse

This post describes a pattern for batch processing triggered pipeline runs in Azure Synapse

6 days ago

Reliably refreshing a Semantic Model from Azure Data Factory or Synapse Pipelines

This post describes a pattern for reliably refreshing Power BI semantic models from Azure Data Factory or Azure Synapse Pipelines.

6 days ago

Power Pages Fundamentals #24: Boosting Portal Security with Azure Single Sign-On: Quick Read Series

Contoso Motors is a large automotive service company.They have built a Power Pages customer portal for their external partners and customers t...

8 days ago
Stay up to date with latest Microsoft Dynamics 365 and Power Platform news!
* Yes, I agree to the privacy policy